Microorganisms (Jun 2024)

Deciphering Microbial Composition in Patients with Inflammatory Bowel Disease: Implications for Therapeutic Response to Biologic Agents

  • Orazio Palmieri,
  • Fabrizio Bossa,
  • Stefano Castellana,
  • Tiziana Latiano,
  • Sonia Carparelli,
  • Giuseppina Martino,
  • Manuel Mangoni,
  • Giuseppe Corritore,
  • Marianna Nardella,
  • Maria Guerra,
  • Giuseppe Biscaglia,
  • Francesco Perri,
  • Tommaso Mazza,
  • Anna Latiano

DOI
https://doi.org/10.3390/microorganisms12071260
Journal volume & issue
Vol. 12, no. 7
p. 1260

Abstract

Read online

Growing evidence suggests that alterations in the gut microbiome impact the development of inflammatory bowel diseases (IBDs), including Crohn’s disease (CD) and ulcerative colitis (UC). Although IBD often requires the use of immunosuppressant drugs and biologic therapies to facilitate clinical remission and mucosal healing, some patients do not benefit from these drugs, and the reasons for this remain poorly understood. Despite advancements, there is still a need to develop biomarkers to help predict prognosis and guide treatment decisions. The aim of this study was to investigate the gut microbiome of IBD patients using biologics to identify microbial signatures associated with responses, following standard accepted criteria. Microbiomes in 66 stool samples from 39 IBD patients, comprising 20 CD and 19 UC patients starting biologic therapies, and 29 samples from healthy controls (HCs) were prospectively analyzed via NGS and an ensemble of metagenomics analysis tools. At baseline, differences were observed in alpha and beta metrics among patients with CD, UC and HC, as well as between the CD and UC groups. The degree of dysbiosis was more pronounced in CD patients, and those with dysbiosis exhibited a limited response to biological drugs. Pairwise differential abundance analyses revealed an increasing trend in the abundance of an unannotated genus from the Clostridiales order, Gemmiger genus and an unannotated genus from the Rikenellaceae family, which were consistently identified in greater abundance in HC. The Clostridium genus was more abundant in CD patients. At baseline, a greater abundance of the Odoribacter and Ruminococcus genera was found in IBD patients who responded to biologics at 14 weeks, whereas a genus identified as SMB53 was more enriched at 52 weeks. The Collinsella genus showed a higher prevalence among non-responder IBD patients. Additionally, a greater abundance of an unclassified genus from the Barnesiellaceae family and one from Lachnospiraceae was observed in IBD patients responding to Vedolizumab at 14 weeks. Our analyses showed global microbial diversity, mainly in CD. This indicated the absence or depletion of key taxa responsible for producing short-chain fatty acids (SCFAs). We also identified an abundance of pathobiont microbes in IBD patients at baseline, particularly in non-responders to biologic therapies. Furthermore, specific bacteria-producing SCFAs were abundant in patients responding to biologics and in those responding to Vedolizumab.

Keywords