Remote Sensing (Oct 2018)
Displacement Monitoring and Health Evaluation of Two Bridges Using Sentinel-1 SAR Images
Abstract
Displacement monitoring of large bridges is an important source of information concerning their health state. In this paper, a procedure based on satellite Persistent Scatterer Interferometry (PSI) data is presented to assess bridge health. The proposed approach periodically assesses the displacements of a bridge in order to detect abnormal displacements at any position of the bridge. To demonstrate its performances, the displacement characteristics of two bridges, the Nanjing-Dashengguan High-speed Railway Bridge (NDHRB, 1272 m long) and the Nanjing-Yangtze River Bridge (NYRB, 1576-m long), are studied. For this purpose, two independent Sentinel-1 SAR datasets were used, covering a two-year period with 75 and 66 images, respectively, providing very similar results. During the observed period, the two bridges underwent no actual displacements: thermal dilation displacements were dominant. For NDHRB, the total thermal dilation parameter from the PSI analysis was computed using the two different datasets; the difference of the two computations was 0.09 mm/°C, which, assuming a temperature variation of 30 °C, corresponds to a discrepancy of 2.7 mm over the total bridge length. From the total thermal dilation parameters, the coefficients of thermal expansion (CTE) were calculated, which were 11.26 × 10−6/°C and 11.19 × 10−6/°C, respectively. These values match the bridge metal properties. For NYRB, the estimated CTE was 10.46 × 10−6/°C, which also matches the bridge metal properties (11.26 × 10−6/°C). Based on a statistical analysis of the PSI topographic errors of NDHRB, pixels on the bridge deck were selected, and displacement models covering the entire NDHRB were established using the two track datasets; the model was validated on the six piers with an absolute mean error of 0.25 mm/°C. Finally, the health state of NDHRB was evaluated with four more images using the estimated models, and no abnormal displacements were found.
Keywords