Minerals (Jun 2020)

Using Whole Rock and Zircon Geochemistry to Assess Porphyry Copper Potential of the Tonggou Copper Deposit, Eastern Tianshan

  • Xue-Bing Zhang,
  • Feng-Mei Chai,
  • Chuan Chen,
  • Hong-Yan Quan,
  • Ke-Yong Wang,
  • Shun-Da Li,
  • Shi-Shan Wu

DOI
https://doi.org/10.3390/min10070584
Journal volume & issue
Vol. 10, no. 7
p. 584

Abstract

Read online

Eastern Tianshan hosts a number of porphyry Cu deposits. However, these mainly formed in the Jueluotage Belt, in the middle part of Eastern Tianshan. The Tonggou porphyry Cu mineralization is an exception to this, since it is located in the Bogda Orogenic Belt, north of Eastern Tianshan. We obtained new zircon U-Pb ages, whole-rock geochemical data, zircon Hf isotope data, and zircon trace element compositions. LA-ICP-MS zircon U-Pb dating indicates a crystallization age of 302.2–303.0 Ma for the Tonggou mineralized granodiorite (TMG), which suggests that the Tonggou porphyry Cu mineralization formed in the Late Carboniferous period. εHf (t) data (1.8–14.1) for TMG suggests it was sourced from juvenile crustal melts, mixed with some mantle materials. TMG displays low ΣREE, compatible elements (Ba, Sr, Zr, and Hf), Zr/Hf and Nb/Ta ratios, as well as clearly negative Eu anomalies in whole rocks analyses. In addition, TMG is enriched in P, Hf and Th/U ratios in zircon, and has lower crystallization temperatures (734 to 735 °C) than the Daheyan barren granodiorite (DBG) (753 to 802 °C). Whole rock and zircon geochemical analyses show that the TMG was formed by fractional crystallization to a greater extent than the DBG in the Bogda Orogenic Belt. Moreover, zircon grains of the TMG show high Ce4+/Ce3+ ratios (159–286), which are consistent with related values from large porphyry deposits of the Central Asian Orogenic Belt (CAOB). High Ce4+/Ce3+ ratios reflect oxidizing magmas as a result of fractional crystallization, which indicates that the Tonggou deposit has potential to host a large porphyry Cu deposit.

Keywords