Molecules (Jun 2020)

Neobavaisoflavone Inhibits Melanogenesis through the Regulation of Akt/GSK-3β and MEK/ERK Pathways in B16F10 Cells and a Reconstructed Human 3D Skin Model

  • Da Eun Kim,
  • Bo Yoon Chang,
  • Sang Ok Ham,
  • Youn Chul Kim,
  • Sung Yeon Kim

DOI
https://doi.org/10.3390/molecules25112683
Journal volume & issue
Vol. 25, no. 11
p. 2683

Abstract

Read online

Previous studies have confirmed the anti-melanogenic effect of the aerial part of Pueraria lobata, however, due to its inherent color, P. lobata has limited commercial use. In this study, an extract (GALM-DC) of the aerial part of P. lobata having improved color by the use of activated carbon was obtained. Furthermore, the active compound neobavaisoflavone (NBI) was identified from GALM-DC. The effect of NBI on melanogenesis, tyrosinase activity, α-glucosidase activity, and mechanism of action in melanocytes was investigated. Tyrosinase activity, melanin contents and the expression of melanin-related genes and proteins were determined in B16F10 cells. NBI reduced melanin synthesis and tyrosinase activity. Furthermore, NBI treatment reduced the mRNA and protein expression levels of MITF, TRP-1, and tyrosinase. NBI also works by phosphorylating and activating proteins that inhibit melanogenesis, such as GSK3β and ERK. Specific inhibitors of Akt/GSK-3β (LY294002) and MEK/ERK (PD98059) signaling prevented the inhibition of melanogenesis by NBI. NBI inhibited melanin production through the regulation of MEK/ERK and Akt/GSK-3β signaling pathways in α-MSH-stimulated B16F10 cells. NBI suppresses tyrosinase activity and melanogenesis through inhibition of α-glucosidase activity. Besides, NBI significantly reduced melanogenesis in a reconstructed human 3D skin model. In conclusion, these results suggest that NBI has potential as a skin-whitening agent for hyperpigmentation.

Keywords