Heliyon (Aug 2024)

Cardioprotective effect of CB1 receptor antagonist AM251 against β receptor-stimulated myocardial infarction via modulation of NF-kB signaling pathway in diabetic mice

  • Harshal D. Pawar,
  • Yugandhara Patil,
  • Ashwani Patil,
  • Kartik T. Nakhate,
  • Yogeeta O. Agrawal,
  • Kapil Suchal,
  • Shreesh Ojha,
  • Sameer N. Goyal

Journal volume & issue
Vol. 10, no. 15
p. e35138

Abstract

Read online

We substantiated the effect of AM251, a cannabinoid receptor-1 (CB1R) antagonist, against β-receptor stimulated myocardial infarction (MI) in streptozotocin (STZ)-induced diabetic mice via modulation- of the NF-kB signaling pathway. The different parameters were assessed such as ECG, hemodynamic, cardiac injury markers, oxidative stress parameters, pro-inflammatory cytokines, and histopathological abnormalities. Mice were fed a high-fat diet for 30 days. On day 7, to trigger diabetes, 150 mg/kg of STZ was injected intraperitoneally. On day 10, to determine whether diabetes developed, the blood level of glucose was monitored. From days 11–30, diabetic mice were injected with either CB1R agonist oleamide or antagonist AM251 or both, with concurrent administrations of β-agonist isoproterenol on days 28 and 29 to induce MI. In comparison to normal, the myocardial infarcted diabetic animals demonstrated alterations in ECG, hemodynamic profiles, and diminished enzymatic activities (CK-MB, LDH, SOD, GSH, catalase), with concurrently increased MDA levels, which indicated increased oxidative stress in the myocardium. Additionally, higher concentrations of cytokines that signal myocardial inflammation, such as IL-1β, IL-6, and TNF-α, were also noted. Furthermore, elevated myonecrosis, edema, and cell infiltration which is confirmed by histopathology of heart tissue. Treatment with AM251 significantly ameliorated myocardial redox status, reduced cytokines, and repaired enzymatic activities leading to subsequent recovery in cardiac function. AM251 effectively suppressed myonecrosis and edema. This study also showed that AM251 protects against myocardial inflammation and oxidative stress triggered by isoproterenol by blocking NF-kB signalling pathway. However, upregulation of the CB1R through oleamide showed significant cardiac toxicity. Conversely, the concurrent administration of oleamide and AM251 failed to induce cardiotoxic effects in isoproterenol-induced MI in diabetic mice which indicates downregulation of the CB1R might be associated with the cardioprotective effect.

Keywords