Cement (Dec 2024)
Co-calcination to produce a synergistic blend of bauxite residue and low-grade kaolinitic clay for use as a supplementary cementitious material
Abstract
New sources of reactive supplementary cementitious materials (SCMs) are essential to help the cement industry to further lower CO2 emissions. A co-calcination process in which bauxite residue (BR) is mixed with kaolinitic clay before calcination can deliver such SCM. The main novelty of the work discussed here is that acceptable reactivity as a SCM can be reached when co-calcining the BR with clays having only 40 wt% of kaolinite. The use of such low-grade kaolinitic clay greater increases the process economics and therefore likely increases overall feasibility. A high inherent reactivity of the desilication products present in the BR is the cause of this ability of using low-grade kaolinitic clays. Cement mortars were made with 30 wt% replacement of CEM I, which showed adequate strength at 28 days and increased strength in comparison with calcined clays or other SCMs in the literature at early age (2–7 days). A wide process temperature window with relatively constant reactivity was observed, but a range of 700–750 °C is recommended for process stability. In addition, a life-cycle assessment underlines that at these conditions a sufficiently low embodied CO2 relative to Portland clinker production is obtained.