Scientific Reports (Oct 2021)

Acidic fluids in the Earth’s lower crust

  • Vinod O. Samuel,
  • M. Santosh,
  • Yirang Jang,
  • Sanghoon Kwon

DOI
https://doi.org/10.1038/s41598-021-00719-3
Journal volume & issue
Vol. 11, no. 1
pp. 1 – 8

Abstract

Read online

Abstract Fluid flux through Earth’s surface and its interior causes geochemical cycling of elements in the Earth. Quantification of such process needs accurate knowledge about the composition and properties of the fluids. Knowledge about the fluids in Earth’s interior is scarce due to limitations in both experimental methods and thermodynamic modeling in high/ultrahigh pressure–temperature conditions. In this study, we present halogen (Cl, F) measurements in apatite grains from the mafic (metagabbro), and felsic (two-pyroxene granulite, charnockite, hornblende-biotite gneiss) rocks preserved in the Nilgiri Block, southern India. Previous experiments show that it is difficult to incorporate Cl in apatite compared to F at high pressure and temperature conditions. Based on regional trends in Cl and F content in apatite (with highest Cl content 2.95 wt%), we suggest the presence of acidic C–O–H fluids in the lower crust (~20–40 km deep) during the high-grade metamorphism of these rocks. These fluids are capable of causing extreme chemical alterations of minerals, especially refractory ones. They also have significant potential for mass transfer, causing extensive geochemical variations on a regional scale and altering the chemical and isotope records of rocks formed in the early Earth. Our findings have important relevance in understanding speciation triggered by acidic fluids in the lower crust, as well as the role of fluids in deep Earth processes.