Cell Reports (Jun 2017)

Cytoplasmic Dynein Transports Axonal Microtubules in a Polarity-Sorting Manner

  • Anand N. Rao,
  • Ankita Patil,
  • Mark M. Black,
  • Erin M. Craig,
  • Kenneth A. Myers,
  • Howard T. Yeung,
  • Peter W. Baas

DOI
https://doi.org/10.1016/j.celrep.2017.05.064
Journal volume & issue
Vol. 19, no. 11
pp. 2210 – 2219

Abstract

Read online

Axonal microtubules are predominantly organized into a plus-end-out pattern. Here, we tested both experimentally and with computational modeling whether a motor-based polarity-sorting mechanism can explain this microtubule pattern. The posited mechanism centers on cytoplasmic dynein transporting plus-end-out and minus-end-out microtubules into and out of the axon, respectively. When cytoplasmic dynein was acutely inhibited, the bi-directional transport of microtubules in the axon was disrupted in both directions, after which minus-end-out microtubules accumulated in the axon over time. Computational modeling revealed that dynein-mediated transport of microtubules can establish and preserve a predominantly plus-end-out microtubule pattern as per the details of the experimental findings, but only if a kinesin motor and a static cross-linker protein are also at play. Consistent with the predictions of the model, partial depletion of TRIM46, a protein that cross-links axonal microtubules in a manner that influences their polarity orientation, leads to an increase in microtubule transport.

Keywords