AIP Advances (May 2017)

Magnetic properties and structure of low temperature phase MnBi with island structure

  • Masashi Ito,
  • Yoshitomo Tanaka,
  • Takuya Satoh,
  • Gary Mankey,
  • Rainer Schad,
  • Takao Suzuki

DOI
https://doi.org/10.1063/1.4977230
Journal volume & issue
Vol. 7, no. 5
pp. 056226 – 056226-7

Abstract

Read online

The magnetic properties of the low temperature phase (LTP) MnBi thin films of islands structure are discussed. The LTP MnBi islands are formed onto silica substrates after the multilayers Bi(3.2nm)/Mn(2nm)x N are deposited and then annealed at 450C for 0.5hr, where N is the number of the repetition of a pair of Mn and Bi layer. Those islands are found to be of the LTP MnBi, with the c-axis orientation along the normal to the sample plane for N=10 ∼ 40. Their size vary from place to place, but are averagely of about a few hundred nm in height and a few μm in width for N from 10 to 40. For N=200, the elongated islands are formed densely, with the length of about a few tens of μm. The coverage of those islands increases with N. The temperature dependence of saturation magnetization Ms is qualitatively similar to that for bulk, though the absolute values for Ms are smaller by 20%. The magnetic anisotropy constants of Ku1 and Ku2 are evaluated for the samples with N=10 ∼ 40, where Ku1 and Ku2 are the magnetic anisotropy constants corresponding to the second and fourth power term in the uniaxial magnetic anisotropy energy expression. It is found that the Ku1 increases with T monotonously, reaching to about 1x107 erg/cc at 400K. On the other hand, the Ku2 remains nearly zero for temperatures below 300K, and then becomes negative, reaching to about 7 x 106 erg/cc at 400K. This is the first to report of the temperature dependence of Ku1 and Ku2 in the LTP MnBi of an island structure. It is also noted that the decrease of Ku for a temperature range beyond around 450 K is possibly due to the decrease of the Ku2 component, as demonstrated in the present study.