Nature Communications (Jan 2021)

Deep convolutional neural networks to predict cardiovascular risk from computed tomography

  • Roman Zeleznik,
  • Borek Foldyna,
  • Parastou Eslami,
  • Jakob Weiss,
  • Ivanov Alexander,
  • Jana Taron,
  • Chintan Parmar,
  • Raza M. Alvi,
  • Dahlia Banerji,
  • Mio Uno,
  • Yasuka Kikuchi,
  • Julia Karady,
  • Lili Zhang,
  • Jan-Erik Scholtz,
  • Thomas Mayrhofer,
  • Asya Lyass,
  • Taylor F. Mahoney,
  • Joseph M. Massaro,
  • Ramachandran S. Vasan,
  • Pamela S. Douglas,
  • Udo Hoffmann,
  • Michael T. Lu,
  • Hugo J. W. L. Aerts

DOI
https://doi.org/10.1038/s41467-021-20966-2
Journal volume & issue
Vol. 12, no. 1
pp. 1 – 9

Abstract

Read online

Coronary artery calcium is an accurate predictor of cardiovascular events but this information is not routinely quantified. Here the authors show a robust and time-efficient deep learning system to automatically quantify coronary calcium on CT scans and predict cardiovascular events in a large, multicentre study.