Materials (Nov 2021)

Fabrication of Graphene/Zinc Oxide Nano-Heterostructure for Hydrogen Sensing

  • Yang-Ming Lu,
  • Chi-Feng Tseng,
  • Bing-Yi Lan,
  • Chia-Fen Hsieh

DOI
https://doi.org/10.3390/ma14226943
Journal volume & issue
Vol. 14, no. 22
p. 6943

Abstract

Read online

In this study, hydrogen (H2) and methane (CH4) were used as reactive gases, and chemical vapor deposition (CVD) was used to grow single-layer graphene on a copper foil substrate. The single-layer graphene obtained was transferred to a single-crystal silicon substrate by PMMA transfer technology for the subsequent growth of nano zinc oxide. The characteristics of CVD-deposited graphene were analyzed by a Raman spectrometer, an optical microscope, a four-point probe, and an ultraviolet/visible spectrometer. The sol–gel method was applied to prepare the zinc oxide seed layer film with the spin-coating method, with methanol, zinc acetate, and sodium hydroxide as the precursors for growing ZnO nanostructures. On top of the ZnO seed layer, a one-dimensional zinc oxide nanostructure was grown by a hydrothermal method at 95 °C, using a zinc nitrate and hexamethylenetetramine mixture solution. The characteristics of the nano zinc oxide were analyzed by scanning electron microscope(SEM),x-ray diffractometer(XRD), and Raman spectrometer. The obtained graphene/zinc oxide nano-heterostructure sensor has a sensitivity of 1.06 at a sensing temperature of 205 °C and a concentration of hydrogen as low as 5 ppm, with excellent sensing repeatability. The main reason for this is that the zinc oxide nanostructure has a large specific surface area, and many oxygen vacancy defects exist on its surface. In addition, the P–N heterojunction formed between the n-type zinc oxide and the p-type graphene also contributes to hydrogen sensing.

Keywords