Royal Society Open Science (Dec 2021)
Degradation of Rhodococcus erythropolis SY095 modified with functional magnetic Fe3O4 nanoparticles
Abstract
Alkali-surfactant-polymer flooding technology is widely employed to extract crude oil to enhance its production. The bacterial strain Rhodococcus erythropolis SY095 has shown high degradation activity of alkane of crude oil. In the past, many treatment strategies have been implemented to reduce oil concentration in wastewater. Previous studies mainly focused on the extracellular products of Erythrococcus rather than its degradation properties. In the current study, we designed an immobilization method to modify the surface of R. erythropolis SY095 with functional Fe3O4 nanoparticles (NPs) for biodegradation of crude oil and separation of the immobilized bacteria after degradation. We characterize the synthesized NPs through various methods, including scanning electron microscope energy-dispersive spectrometer, Fourier transform infrared spectroscopy, X-ray diffraction (XRD) and a vibrating sample magnetometer. We found that the size of the synthesized NPs was approximately 100 nm. Our results showed that R. erythropolis SY095 was successfully coated with functional magnetic NPs (MNPs) that could be easily separated from the solution via the application of an external magnetic field. The coated cells had a high tolerance for heavy metals. Our findings demonstrated that the immobilization of MNPs to bacterial surfaces is a promising approach for the degradation of crude oil.
Keywords