Revista Facultad Nacional de Agronomía Medellín (Jun 2006)
ANÁLISIS BAYESIANO DE ESTABILIDAD FENOTIPICA USANDO A PRIORI DE JEFFREYS BAYESIAN PHENOTYPIC STABILITY ANALYSIS USING JEFFREYS’S PRIOR
Abstract
Uno de los métodos utilizados para evaluar estabilidad fenotípica es el propuesto por Shukla, el cual calcula la varianza de los genotipos dentro de la interacción genotipo por ambiente, para lo cual se hace uso de la estimación de los componentes de varianza dentro del análisis de varianza combinado. El acceso al cálculo de metodologías como REML e ML permitieron trabajar con datos que presentan algún grado de desbalance, sin embargo no solucionan de una manera adecuada el problema de la estimación de componentes de varianza negativos, los cuales son asumidos como cero y redistribuidos en los demás componentes positivos. El uso de la metodología bayesiana en la estimación de componentes de varianza resuelve satisfactoriamente este problema sin afectar los demás componentes. En este trabajo, se utilizaron datos de producción comercial de papa de 10 pruebas regionales realizadas en la región andina colombiana y se utilizó la metodología bayesiana en la solución del modelo mixto para la estimación de la varianza de Shukla con base en una distribución a priori no informativa de Jeffreys. Fueron obtenidas muestras de la distribución a posteriori conjunta mediante el algoritmo Independence Chain, con un tamaño de muestreo de 1,16x10(5) y un burnin de 500. Los resultados muestran que en la estimación REML de componentes de varianza tres genotipos presentan componentes de varianza estimados como cero. Las estimativas bayesianas son 89,35; 377,18 y 101,12; y los respectivos intervalos de credibilidad al 95% son: (2,13 - 371,70), (35,26 - 1363,67) y (2,33 - 434,53). Finalmente con estas estimativas no se afectó la estimación de los demás componentes de varianza.Shukla's variance is a very useful method for the analysis of phenotypic stability, computing the genotypic variance among the genotype by environment interaction, using variance component estimation of combined analysis of variance. New methodologies like REML or ML allow work with unbalanced data but do not have a good solution for the negative variance estimate problem. In this case, the component is taken as zero and the rest of the variance is redistributed into other components with positive estimates. The use of Bayesian methodology in the variance component estimation resolves satisfactory this problem without affecting the other components. This research uses the Bayesian estimation methodology for the solution of the mixed model in order to obtain the Shukla's variance for potato production data of 10 regional trials established in the Colombian Andean Region. The noninformative Jeffreys’s prior and Independence Chain algorithm were used. The burnin period was 500 iterations and 1,16x10(5) generations of joint posterior distribution were obtained. The REML methodology found three Shukla's variances with zero estimates. The corresponding Bayesian estimates were 89,35; 377,18 and 101,12 and the 95% confidence intervals were (2,13 - 371,70); (35,26 - 1363,67) and (2,33 - 434,53), respectively. Finally, these estimates do not affect other variance estimate components.