Frontiers in Neuroscience (Jan 2023)

Prediction of motor function in patients with traumatic brain injury using genetic algorithms modified back propagation neural network: a data-based study

  • Hui Dang,
  • Hui Dang,
  • Hui Dang,
  • Wenlong Su,
  • Wenlong Su,
  • Zhiqing Tang,
  • Shouwei Yue,
  • Hao Zhang,
  • Hao Zhang,
  • Hao Zhang

DOI
https://doi.org/10.3389/fnins.2022.1031712
Journal volume & issue
Vol. 16

Abstract

Read online

ObjectiveTraumatic brain injury (TBI) is one of the leading causes of death and disability worldwide. In this study, the characteristics of the patients, who were admitted to the China Rehabilitation Research Center, were elucidated in the TBI database, and a prediction model based on the Fugl-Meyer assessment scale (FMA) was established using this database.MethodsA retrospective analysis of 463 TBI patients, who were hospitalized from June 2016 to June 2020, was performed. The data of the patients used for this study included the age and gender of the patients, course of TBI, complications, and concurrent dysfunctions, which were assessed using FMA and other measures. The information was collected at the time of admission to the hospital and 1 month after hospitalization. After 1 month, a prediction model, based on the correlation analyses and a 1-layer genetic algorithms modified back propagation (GA-BP) neural network with 175 patients, was established to predict the FMA. The correlations between the predicted and actual values of 58 patients (prediction set) were described.ResultsMost of the TBI patients, included in this study, had severe conditions (70%). The main causes of the TBI were car accidents (56.59%), while the most common complication and dysfunctions were hydrocephalus (46.44%) and cognitive and motor dysfunction (65.23 and 63.50%), respectively. A total of 233 patients were used in the prediction model, studying the 11 prognostic factors, such as gender, course of the disease, epilepsy, and hydrocephalus. The correlation between the predicted and the actual value of 58 patients was R2 = 0.95.ConclusionThe genetic algorithms modified back propagation neural network can predict motor function in patients with traumatic brain injury, which can be used as a reference for risk and prognosis assessment and guide clinical decision-making.

Keywords