Heliyon (Jun 2024)
Investigation and performance analysis of eco-friendly coco fiber concrete hybridized with CNT blend
Abstract
With the development of the technical trend, concrete using waste alternate material instead of sand material found economic potential for good structural behaviour. Besides, the susceptible crack, low strength-to-weight ratio, and low compressive strength are the reasons for shrinkage. Due to this reason, the investigation aims to limit the shrinkage under live load and increase the compression and flexural strength by the introduction of coconut waste chopped fiber (wCF), waste fly ash (wFA), and carbon nanotube powder (CNT) blended with conventional Portland paste. The developed concrete consists of 5 wt% wCF, 10 wt% wFA, and 0, 5, 10, and 15 wt% of CNT and is subjected to X-ray diffraction analysis, bulk density, compression and flexural strength, and water absorption studies. The X-ray diffraction pattern revealed the wCF, wFA, CNT, and matrix compositions. The concrete developed with 5 wt% wCF, 10 wt% wFA, and 15 wt% CNT cured within 28 days recorded maximum behaviour of compression strength (47 ± 1.8 MPa), flexural strength (4.9 ± 0.19 MPa), and water absorption of (2.8 ± 0.05 %).