Antibiotics (Sep 2024)
Trends in Antimicrobial Resistance of Uropathogens Isolated from Urinary Tract Infections in a Tertiary Care Hospital in Dhaka, Bangladesh
Abstract
Background/Objectives: Urinary tract infection (UTI) is a prevalent microbial infection in medical practise, leading to significant patient morbidity and increased treatment costs, particularly in developing countries. This retrospective study, conducted at a tertiary care hospital in Dhaka, Bangladesh, aims to examine the antimicrobial resistance (AMR) patterns of uropathogens and evaluate whether these patterns are influenced by demographic factors such as gender, age, or patient status. Methods: Standard microbiological techniques were used to identify uropathogens, and AMR patterns were determined using the Kirby–Bauer disc diffusion method. Results: Out of 6549 urine samples, 1001 cultures were positive. The infection was more prevalent in females compared to males. The incidence of UTIs in children aged 0–10 years accounted for 12.59% of the total cases, with this age group also exhibiting the highest rate of polymicrobial infections. Among the bacterial uropathogens, 71.19% of isolates were multidrug resistant (MDR) and 84.27% were resistant to at least one antibiotic. Escherichia coli (n = 544, 73.90% MDR) and Klebsiella species (n = 143, 48.95% MDR) were the most common Gram-negative uropathogens, while Enterococcus species (n = 78, 94.87% MDR) was the predominant Gram-positive isolate in this study. Our results indicate that most uropathogens showed resistance against ceftazidime, followed by cefuroxime, trimethoprim-sulfamethoxazole, amoxicillin-clavulanate, and netilmicin. Moderate levels of resistance were observed against ciprofloxacin, levofloxacin, aztreonam, and cefpodoxime. Conclusions: Amikacin was observed to be effective against Gram-negative uropathogens, whereas cefixime was more active against Gram-positive microorganisms, such as Enterococcus species. Moreover, a principal coordinate analysis (PCoA) depicted no significant influence of gender, patient status, or age on AMR patterns. For the continued usefulness of most antibiotics, periodic analysis of the AMR patterns of uropathogens can help assess the rise of MDR bacteria, and therefore guide the selection of appropriate antibiotic treatment strategies.
Keywords