Nature Communications (Aug 2024)
Pathfinder experiments with atom interferometry in the Cold Atom Lab onboard the International Space Station
- Jason R. Williams,
- Charles A. Sackett,
- Holger Ahlers,
- David C. Aveline,
- Patrick Boegel,
- Sofia Botsi,
- Eric Charron,
- Ethan R. Elliott,
- Naceur Gaaloul,
- Enno Giese,
- Waldemar Herr,
- James R. Kellogg,
- James M. Kohel,
- Norman E. Lay,
- Matthias Meister,
- Gabriel Müller,
- Holger Müller,
- Kamal Oudrhiri,
- Leah Phillips,
- Annie Pichery,
- Ernst M. Rasel,
- Albert Roura,
- Matteo Sbroscia,
- Wolfgang P. Schleich,
- Christian Schneider,
- Christian Schubert,
- Bejoy Sen,
- Robert J. Thompson,
- Nicholas P. Bigelow
Affiliations
- Jason R. Williams
- Jet Propulsion Laboratory, California Institute of Technology
- Charles A. Sackett
- Department of Physics, University of Virginia
- Holger Ahlers
- German Aerospace Center (DLR), Institute for Satellite Geodesy and Inertial Sensing
- David C. Aveline
- Jet Propulsion Laboratory, California Institute of Technology
- Patrick Boegel
- Institut für Quantenphysik and Center for Integrated Quantum Science and Technology (IQST), Ulm University
- Sofia Botsi
- Jet Propulsion Laboratory, California Institute of Technology
- Eric Charron
- Université Paris-Saclay, CNRS, Institut des Sciences Moléculaires d’Orsay
- Ethan R. Elliott
- Jet Propulsion Laboratory, California Institute of Technology
- Naceur Gaaloul
- Leibniz University Hannover, Institute of Quantum Optics, QUEST-Leibniz Research School
- Enno Giese
- Technische Universität Darmstadt, Fachbereich Physik, Institut für Angewandte Physik
- Waldemar Herr
- German Aerospace Center (DLR), Institute for Satellite Geodesy and Inertial Sensing
- James R. Kellogg
- Jet Propulsion Laboratory, California Institute of Technology
- James M. Kohel
- Jet Propulsion Laboratory, California Institute of Technology
- Norman E. Lay
- Jet Propulsion Laboratory, California Institute of Technology
- Matthias Meister
- German Aerospace Center (DLR), Institute of Quantum Technologies
- Gabriel Müller
- Leibniz University Hannover, Institute of Quantum Optics, QUEST-Leibniz Research School
- Holger Müller
- Department of Physics, University of California
- Kamal Oudrhiri
- Jet Propulsion Laboratory, California Institute of Technology
- Leah Phillips
- Jet Propulsion Laboratory, California Institute of Technology
- Annie Pichery
- Université Paris-Saclay, CNRS, Institut des Sciences Moléculaires d’Orsay
- Ernst M. Rasel
- Leibniz University Hannover, Institute of Quantum Optics, QUEST-Leibniz Research School
- Albert Roura
- German Aerospace Center (DLR), Institute of Quantum Technologies
- Matteo Sbroscia
- Jet Propulsion Laboratory, California Institute of Technology
- Wolfgang P. Schleich
- Institut für Quantenphysik and Center for Integrated Quantum Science and Technology (IQST), Ulm University
- Christian Schneider
- Jet Propulsion Laboratory, California Institute of Technology
- Christian Schubert
- German Aerospace Center (DLR), Institute for Satellite Geodesy and Inertial Sensing
- Bejoy Sen
- Department of Physics, University of Virginia
- Robert J. Thompson
- Jet Propulsion Laboratory, California Institute of Technology
- Nicholas P. Bigelow
- Department of Physics and Astronomy, Institute of Optics, Center for Coherence and Quantum Optics, University of Rochester
- DOI
- https://doi.org/10.1038/s41467-024-50585-6
- Journal volume & issue
-
Vol. 15,
no. 1
pp. 1 – 11
Abstract
Abstract Deployment of ultracold atom interferometers (AI) into space will capitalize on quantum advantages and the extended freefall of persistent microgravity to provide high-precision measurement capabilities for gravitational, Earth, and planetary sciences, and to enable searches for subtle forces signifying physics beyond General Relativity and the Standard Model. NASA’s Cold Atom Lab (CAL) operates onboard the International Space Station as a multi-user facility for fundamental studies of ultracold atoms and to mature space-based quantum technologies. We report on pathfinding experiments utilizing ultracold 87Rb atoms in the CAL AI. A three-pulse Mach–Zehnder interferometer was studied to understand the influence of ISS vibrations. Additionally, Ramsey shear-wave interferometry was used to manifest interference patterns in a single run that were observable for over 150 ms free-expansion time. Finally, the CAL AI was used to remotely measure the Bragg laser photon recoil as a demonstration of the first quantum sensor using matter-wave interferometry in space.