Applied Sciences (Mar 2022)

Removal of Emerging Contaminants as Diclofenac and Caffeine Using Activated Carbon Obtained from Argan Fruit Shells

  • Badr Bouhcain,
  • Daniela Carrillo-Peña,
  • Fouad El Mansouri,
  • Yassine Ez Zoubi,
  • Raúl Mateos,
  • Antonio Morán,
  • José María Quiroga,
  • Mohammed Hassani Zerrouk

DOI
https://doi.org/10.3390/app12062922
Journal volume & issue
Vol. 12, no. 6
p. 2922

Abstract

Read online

Activated carbons from argan nutshells were prepared by chemical activation using phosphoric acid H3PO4. This material was characterized by thermogravimetric analysis, infrared spectrometry, and the Brunauer–Emmett–Teller method. The adsorption of two emerging compounds, a stimulant caffeine and an anti-inflammatory drug diclofenac, from distilled water through batch and dynamic tests was investigated. Batch mode experiments were conducted to assess the capacity of adsorption of caffeine and diclofenac from an aqueous solution using the carbon above. Adsorption tests showed that the equilibrium time is 60 and 90 min for diclofenac and caffeine, respectively. The adsorption of diclofenac and caffeine on activated carbon from argan nutshells is described by a pseudo-second-order kinetic model. The highest adsorption capacity determined by the mathematical model of Langmuir is about 126 mg/g for diclofenac and 210 mg/g for caffeine. The thermodynamic parameters attached to the studied absorbent/adsorbate system indicate that the adsorption process is spontaneous and exothermic for diclofenac and endothermic for caffeine.

Keywords