Materials Research Letters (Apr 2022)
Nanomaterials by severe plastic deformation: review of historical developments and recent advances
- Kaveh Edalati,
- Andrea Bachmaier,
- Victor A. Beloshenko,
- Yan Beygelzimer,
- Vladimir D. Blank,
- Walter J. Botta,
- Krzysztof Bryła,
- Jakub Čížek,
- Sergiy Divinski,
- Nariman A. Enikeev,
- Yuri Estrin,
- Ghader Faraji,
- Roberto B. Figueiredo,
- Masayoshi Fuji,
- Tadahiko Furuta,
- Thierry Grosdidier,
- Jenő Gubicza,
- Anton Hohenwarter,
- Zenji Horita,
- Jacques Huot,
- Yoshifumi Ikoma,
- Miloš Janeček,
- Megumi Kawasaki,
- Petr Král,
- Shigeru Kuramoto,
- Terence G. Langdon,
- Daniel R. Leiva,
- Valery I. Levitas,
- Andrey Mazilkin,
- Masaki Mito,
- Hiroyuki Miyamoto,
- Terukazu Nishizaki,
- Reinhard Pippan,
- Vladimir V. Popov,
- Elena N. Popova,
- Gencaga Purcek,
- Oliver Renk,
- Ádám Révész,
- Xavier Sauvage,
- Vaclav Sklenicka,
- Werner Skrotzki,
- Boris B. Straumal,
- Satyam Suwas,
- Laszlo S. Toth,
- Nobuhiro Tsuji,
- Ruslan Z. Valiev,
- Gerhard Wilde,
- Michael J. Zehetbauer,
- Xinkun Zhu
Affiliations
- Kaveh Edalati
- Kyushu University
- Andrea Bachmaier
- Austrian Academy of Sciences
- Victor A. Beloshenko
- National Academy of Sciences of Ukraine
- Yan Beygelzimer
- National Academy of Sciences of Ukraine
- Vladimir D. Blank
- Technological Institute for Superhard and Novel Carbon Materials
- Walter J. Botta
- Universidade Federal de São Carlos
- Krzysztof Bryła
- Cracow University of Technology
- Jakub Čížek
- Charles University in Prague
- Sergiy Divinski
- University of Münster
- Nariman A. Enikeev
- Ufa State Aviation Technical University
- Yuri Estrin
- Monash University
- Ghader Faraji
- University of Tehran
- Roberto B. Figueiredo
- Universidade Federal de Minas Gerais
- Masayoshi Fuji
- Nagoya Institute of Technology
- Tadahiko Furuta
- Toyota Central R&D Laboratories Inc.
- Thierry Grosdidier
- Université de Lorraine
- Jenő Gubicza
- Eötvös Loránd University
- Anton Hohenwarter
- Montanuniversität Leoben
- Zenji Horita
- Kyushu University
- Jacques Huot
- Université du Québec à Trois-Rivières
- Yoshifumi Ikoma
- Kyushu University
- Miloš Janeček
- Charles University in Prague
- Megumi Kawasaki
- Oregon State University
- Petr Král
- Institute of Physics of Materials
- Shigeru Kuramoto
- Ibaraki University
- Terence G. Langdon
- University of Southampton
- Daniel R. Leiva
- Universidade Federal de São Carlos
- Valery I. Levitas
- Iowa State University
- Andrey Mazilkin
- Institute of Solid State Physics
- Masaki Mito
- Kyushu Institute of Technology
- Hiroyuki Miyamoto
- Doshisha University
- Terukazu Nishizaki
- Kyushu Sangyo University
- Reinhard Pippan
- Austrian Academy of Sciences
- Vladimir V. Popov
- Ural Branch of RAS
- Elena N. Popova
- Ural Branch of RAS
- Gencaga Purcek
- Karadeniz Technical University
- Oliver Renk
- Austrian Academy of Sciences
- Ádám Révész
- Eötvös Loránd University
- Xavier Sauvage
- Normandie University
- Vaclav Sklenicka
- Institute of Physics of Materials
- Werner Skrotzki
- Dresden University of Technology
- Boris B. Straumal
- Institute of Solid State Physics
- Satyam Suwas
- Indian Institute of Science
- Laszlo S. Toth
- Université de Lorraine
- Nobuhiro Tsuji
- Kyoto University
- Ruslan Z. Valiev
- Ufa State Aviation Technical University
- Gerhard Wilde
- University of Münster
- Michael J. Zehetbauer
- University of Vienna
- Xinkun Zhu
- Kunming University of Science and Technology
- DOI
- https://doi.org/10.1080/21663831.2022.2029779
- Journal volume & issue
-
Vol. 10,
no. 4
pp. 163 – 256
Abstract
Severe plastic deformation (SPD) is effective in producing bulk ultrafine-grained and nanostructured materials with large densities of lattice defects. This field, also known as NanoSPD, experienced a significant progress within the past two decades. Beside classic SPD methods such as high-pressure torsion, equal-channel angular pressing, accumulative roll-bonding, twist extrusion, and multi-directional forging, various continuous techniques were introduced to produce upscaled samples. Moreover, numerous alloys, glasses, semiconductors, ceramics, polymers, and their composites were processed. The SPD methods were used to synthesize new materials or to stabilize metastable phases with advanced mechanical and functional properties. High strength combined with high ductility, low/room-temperature superplasticity, creep resistance, hydrogen storage, photocatalytic hydrogen production, photocatalytic CO2 conversion, superconductivity, thermoelectric performance, radiation resistance, corrosion resistance, and biocompatibility are some highlighted properties of SPD-processed materials. This article reviews recent advances in the NanoSPD field and provides a brief history regarding its progress from the ancient times to modernity. Abbreviations: ARB: Accumulative Roll-Bonding; BCC: Body-Centered Cubic; DAC: Diamond Anvil Cell; EBSD: Electron Backscatter Diffraction; ECAP: Equal-Channel Angular Pressing (Extrusion); FCC: Face-Centered Cubic; FEM: Finite Element Method; FSP: Friction Stir Processing; HCP: Hexagonal Close-Packed; HPT: High-Pressure Torsion; HPTT: High-Pressure Tube Twisting; MDF: Multi-Directional (-Axial) Forging; NanoSPD: Nanomaterials by Severe Plastic Deformation; SDAC: Shear (Rotational) Diamond Anvil Cell; SEM: Scanning Electron Microscopy; SMAT: Surface Mechanical Attrition Treatment; SPD: Severe Plastic Deformation; TE: Twist Extrusion; TEM: Transmission Electron Microscopy; UFG: Ultrafine Grained
Keywords
- severe plastic deformation (spd)
- surface severe plastic deformation
- ultrafine-grained (ufg) materials
- mechanical properties
- functional properties