Journal of Marine Science and Engineering (Sep 2023)

Relationship between Large-Scale Variability of North Pacific Waves and El Niño-Southern Oscillation

  • Xin Zhang,
  • Kejian Wu,
  • Rui Li,
  • Shuai Zhang,
  • Ruyan Zhang,
  • Jin Liu,
  • Alexander V. Babanin

DOI
https://doi.org/10.3390/jmse11101848
Journal volume & issue
Vol. 11, no. 10
p. 1848

Abstract

Read online

Ocean waves are crucial for driving various oceanic processes. In this study, the spatial and temporal distribution of significant wave height (SWH) in the North Pacific (NP) is analyzed using the 42-year ERA5 reanalysis dataset from European Centre for Medium-Range Weather Forecasts (ECMWF). The presence of an ENSO signal is confirmed in wave fields of the North Pacific. Furthermore, the spatial distributions of swells and wind waves are analyzed using the Empirical Orthogonal Function (EOF) method, revealing that waves can transport large-scale signals from the NP to lower latitudes through swells. In addition, our research reveals a relationship between ENSO and Stokes drift in the NP. Stokes drift contributes positively to the maintenance of stable sea surface temperatures (SSTs) by transporting more (less) water towards the equatorial Pacific during El Niño (La Niña year) years. It is further noted that during strong ENSO events, the strength of the Stokes drift anomaly intensifies accordingly, which implies a strong link between wave-induced transport and ENSO.

Keywords