Arthritis Research & Therapy (May 2020)
Proteoglycan loss in the articular cartilage is associated with severity of joint inflammation in psoriatic arthritis—a compositional magnetic resonance imaging study
Abstract
Abstract Background Even though cartilage loss is a known feature of psoriatic arthritis (PsA), little is known about its role in the pathogenesis of PsA. Using delayed gadolinium-enhanced magnetic resonance imaging of cartilage (dGEMRIC) as a non-invasive marker of the tissue’s proteoglycan content, such early (i.e., pre-morphological) changes have been associated with inflammation in rheumatoid arthritis (RA). Yet, this association has not been studied before in PsA. Methods The metacarpophalangeal (MCP), proximal interphalangeal (PIP), and distal interphalangeal (DIP) joints of 17 patients with active PsA were evaluated by high-resolution clinical standard morphological and dGEMRIC sequences using a 3T MRI scanner (Magnetom Skyra, Siemens) and a dedicated 16-channel hand coil. Images were analyzed by two independent raters for dGEMRIC indices, PsA MRI scores (PsAMRIS), and total cartilage thickness (TCT). Kendall tau correlation coefficients (τ) were calculated. Results We found significant negative correlations between dGEMRIC indices and total PsAMRIS (τ = − 0.5, p = 0.012), synovitis (τ = − 0.56, p = 0.006), flexor tenosynovitis (τ = − 0.4, p = 0.049), and periarticular inflammation (τ = − 0.72, p < 0.001). Significant positive correlations were found between TCT and dGEMRIC indices at all joint levels (τ = 0.43, p < 0.001). No significant correlations were determined between dGEMRIC indices and bone erosion, bone edema, or bone proliferation. Conclusion In PsA, proteoglycan loss as assessed by dGEMRIC is associated with periarticular inflammation, synovitis, and flexor tenosynovitis, but not with bone erosion or proliferation. Thereby, these findings contribute to in vivo concepts of the disease’s pathophysiology. Beyond morphology, advanced MRI techniques may be used to assess cartilage composition in PsA and to identify early changes in the cartilage as an imaging biomarker with potential application in detection, monitoring, and prediction of outcomes of PsA. Trial registration 2014123117 , December 2014.
Keywords