Nanomaterials (Sep 2021)

Construction of Electrostatic Self-Assembled 2D/2D CdIn<sub>2</sub>S<sub>4</sub>/g-C<sub>3</sub>N<sub>4</sub> Heterojunctions for Efficient Visible-Light-Responsive Molecular Oxygen Activation

  • Hongfei Yin,
  • Chunyu Yuan,
  • Huijun Lv,
  • Xulin He,
  • Cheng Liao,
  • Xiaoheng Liu,
  • Yongzheng Zhang

DOI
https://doi.org/10.3390/nano11092342
Journal volume & issue
Vol. 11, no. 9
p. 2342

Abstract

Read online

Molecular oxygen activated by visible light to generate radicals with high oxidation ability exhibits great potential in environmental remediation The efficacy of molecular oxygen activation mainly depends on the separation and migration efficiency of the photoinduced charge carriers. In this work, 2D/2D CdIn2S4/g-C3N4 heterojunctions with different weight ratios were successfully fabricated by a simple electrostatic self-assembled route. The optimized sample with a weight ratio of 5:2 between CdIn2S4 and g-C3N4 showed the highest photocatalytic activity for tetracycline hydrochloride (TCH) degradation, which also displayed good photostability. The enhancement of the photocatalytic performance could be ascribed to the 2D/2D heterostructure; this unique 2D/2D structure could promote the separation and migration of the photoinduced charge carriers, which was beneficial for molecular oxygen activation, leading to an enhancement in photocatalytic activity. This work may possibly provide a scalable way for molecular oxygen activation in photocatalysis.

Keywords