Journal of Materiomics (Jul 2023)

High-performance photodetectors based on two-dimensional perovskite crystals with alternating interlayer cations

  • Yezhan Li,
  • Zhengxun Lai,
  • You Meng,
  • Wei Wang,
  • Yuxuan Zhang,
  • Xuwen Zhao,
  • Di Yin,
  • Weijun Wang,
  • Pengshan Xie,
  • Quan Quan,
  • SenPo Yip,
  • Johnny C. Ho

Journal volume & issue
Vol. 9, no. 4
pp. 817 – 823

Abstract

Read online

Organic-inorganic halide perovskite, as a low-cost, solution-processable material with remarkable optoelectronic properties, is ideal candidate to fabricate high-performance photodetectors and is expected to significantly reduce device costs. Compared to the common Dion-Jacobson and Ruddlesden-Popper two-dimensional (2D) layered hybrid perovskite compounds, the perovskites with alternating cations in the interlayer (ACI) phase show higher crystal symmetry and narrower optical bandgaps, which exhibit great potential for excellent photodetection performance. Herein, we report a high-performance photodetector based on the 2D bilayered hybrid lead halide perovskite single crystal with the ACI phase (GAMA2Pb2I7; GA = C(NH2)3 and MA = CH3NH3). The single-crystal photodetector exhibits high photoresponsivity of 1.56, 2.54, and 2.60 A/W for incident light wavelengths of 405, 532, and 635 nm under 9.82 nW, respectively, together with the correspondingly high detectivity values of 1.86 × 1012, 3.04 × 1012, and 3.11 × 1012 Jones under the same operating conditions. Meanwhile, a high-resolution imaging sensor is built based on the GAMA2Pb2I7 single-crystal photodetector, confirming the high stability and photosensitivity of the imaging system. These results show that the 2D hybrid lead halide perovskites with alternating interlayer cations are promising for high-performance visible light photodetectors and imaging systems.

Keywords