PLoS ONE (Jan 2014)

High-resolution melting-curve analysis of obg gene to differentiate the temperature-sensitive Mycoplasma synoviae vaccine strain MS-H from non-temperature-sensitive strains.

  • Muhammad A Shahid,
  • Philip F Markham,
  • Marc S Marenda,
  • Rebecca Agnew-Crumpton,
  • Amir H Noormohammadi

DOI
https://doi.org/10.1371/journal.pone.0092215
Journal volume & issue
Vol. 9, no. 3
p. e92215

Abstract

Read online

Temperature-sensitive (ts+) vaccine strain MS-H is the only live attenuated M. synoviae vaccine commercially available for use in poultry. With increasing use of this vaccine to control M. synoviae infections, differentiation of MS-H from field M. synoviae strains and from rarely occurring non-temperature-sensitive (ts-) MS-H revertants has become important, especially in countries where local strains are indistinguishable from MS-H by sequence analysis of variable lipoprotein haemagglutinin (vlhA) gene. Single nucleotide polymorphisms (SNPs) in the obg of MS-H have been found to associate with ts phenotype. In this study, four PCRs followed by high-resolution melting (HRM)-curve analysis of the regions encompassing these SNPs were developed and evaluated for their potential to differentiate MS-H from 36 M. synoviae strains/isolates. The nested-obg PCR-HRM differentiated ts+ MS-H vaccine not only from field M. synoviae strains/isolates but also from ts- MS-H revertants. The mean genotype confidence percentages, 96.9±3.4 and 8.8±11.2 for ts+ and ts- strains, respectively, demonstrated high differentiating power of the nested-obg PCR-HRM. Using a combination of nested-obg and obg-F3R3 PCR-HRM, 97% of the isolates/strains were typed according to their ts phenotype with all MS-H isolates typed as MS-H. A set of respiratory swabs from MS-H vaccinated specific pathogen free chickens and M. synoviae infected commercial chicken flocks were tested using obg PCR-HRM system and results were consistent with those of vlhA genotyping. The PCR-HRM system developed in this study, proved to be a rapid and reliable tool using pure M. synoviae cultures as well as direct clinical specimens.