BMC Pregnancy and Childbirth (Aug 2021)
Protocol for an interventional study to reduce postpartum weight retention in obese mothers using the internet of things and a mobile application: a randomized controlled trial (SpringMom)
Abstract
Abstract Background Obese pregnant women are known to experience poorer pregnancy outcomes and are at higher risk of postnatal arteriosclerosis. Hence, weight control during and after pregnancy is important for reducing these risks. The objective of our planned randomized controlled trial is to evaluate whether the rate of change in body weight in obese women before pregnancy to 12 months postpartum would be lower with the use of an intervention consisting of Internet of Things (IoT) devices and mobile applications during pregnancy to 1 year postpartum compared to a non-intervention group. Methods Women will be recruited during outpatient maternity checkups at four perinatal care institutions in Japan. We will recruit women at less than 30 weeks of gestation with a pre-pregnancy body mass index ≥ 25 kg/m2. The women will be randomly assigned to an intervention or non-intervention group. The intervention will involve using data (weight, body composition, activity, sleep) measured with IoT devices (weight and body composition monitor, activity, and sleep tracker), meal records, and photographs acquired using a mobile application to automatically generate advice, alongside the use of a mobile application to provide articles and videos related to obesity and pregnancy. The primary outcome will be the ratio of change in body weight (%) from pre-pregnancy to 12 months postpartum compared to before pregnancy. Discussion This study will examine whether behavioral changes occurring during pregnancy, a period that provides a good opportunity to reexamine one's habits, lead to lifestyle improvements during the busy postpartum period. We aim to determine whether a lifestyle intervention that is initiated during pregnancy can suppress weight gain during pregnancy and encourage weight loss after delivery. Trial registration UMIN: UMIN (University hospital Medical Information Network) 000,041,460. Resisted on 18th August 2020. https://upload.umin.ac.jp/cgi-open-bin/ctr_e/ctr_view.cgi?recptno=R000047278
Keywords