Biotechnology for Biofuels (Mar 2021)
Comparison of various organic acids for xylo-oligosaccharide productions in terms of pKa values and combined severity
Abstract
Abstract Background Methods to produce XOS have been intensively investigated, including enzymatic hydrolysis, steam explosion, and acid hydrolysis. Acid hydrolysis is currently the most widely used method to produce XOS due to its advantages of fewer processing steps, stronger raw material adaptability, higher yield, and better reproducibility. Especially, organic acids such as acetic acid, formic acid and xylonic acid work better as compared with mineral acids. However, the catalytic mechanism of different organic acids has been little studied. In this paper, four different organic acids, including formic acid, glycolic acid, lactic acid, and acetic acid were selected to compare their hydrolytic effects. Results Using pKa values as the benchmark, the yield of xylo-oligosaccharide (XOS) increased with the increasing value of pKa. The yield of XOS was 37% when hydrolyzed by 5% acetic acid (pKa = 4.75) at 170 ℃ for 20 min. Combined severity (CS), a parameter associated with temperature and reaction time was proposed, was proposed to evaluate the hydrolysis effect. The results of CS were consistent with that of pKa values on both the yield of XOS and the inhibitor. Conclusion The results based on pKa values and combined severity, a parameter associated with temperature and reaction time, concluded that acetic acid is a preferred catalyst. Combining the techno-economic analysis and environmental benefits, acetic acid hydrolysis process has lower factory production costs, and it is also an important metabolite and a carbon source for wastewater anaerobic biological treatment. In conclusion, production of xylo-oligosaccharides by acetic acid is an inexpensive, environment-friendly, and sustainable processing technique.
Keywords