Signals (Jan 2023)
Low-Cost Implementation of an Adaptive Neural Network Controller for a Drive with an Elastic Shaft
Abstract
This paper deals with the implementation of an adaptive speed controller applied for two electrical machines coupled by a long shaft. The two main parts of the study are the synthesis of the neural adaptive controller and hardware implementation using a low-cost system based on an STM Discovery board. The framework between the control system, the power converters, and the motors is established with an ARM device. A radial basis function neural network (RBFNN) is used as an adaptive speed controller. The net coefficients are updated (online mode) to ensure high dynamics of the system and correct work under disturbance. The results contain transients achieved in simulations and experimental tests.
Keywords