RUDN Journal of Informatization in Education (Dec 2021)

Realization of the scientific and cognitive potential of teaching university students to inverse and incorrect problems in the context of informatization of education

  • Viktor S. Kornilov

DOI
https://doi.org/10.22363/2312-8631-2021-18-3-248-257
Journal volume & issue
Vol. 18, no. 3
pp. 248 – 257

Abstract

Read online

Problem and goal . Since the mid-50s of the 20th century, both Russian and foreign scientists began to actively conduct, and, at present, scientific research on inverse and incorrectly posed problems is being successfully carried out. Often, research on inverse and incorrect problems is carried out jointly by Russian and foreign experts. At present, the results of joint research by specialists on inverse and incorrect problems from Germany, Italy, China, Russia, Sweden, Japan and other countries are discussed at various thematic international scientific conferences and are subsequently published on the pages of scientific Russian and foreign journals. Many such publications can be found in the electronic libraries of scientific publications elibrary.ru, CyberLeninka, in the bibliographic and abstract database Scopus and other bibliographic and abstract databases. The wide availability of such bibliographic and abstract electronic databases allows the teacher who teaches students inverse and incorrect problems to keep abreast of modern scientific achievements in the scientific world and to form the content of a variety of elective courses, including modern mathematical methods and approaches to researching inverse and incorrect problems. When teaching inverse and incorrect problems, the teacher must realize the goals and objectives of not only the formation of deep scientific subject knowledge in students, but also the identification of the scientific and cognitive potential of such training. Methodology. Realization of the scientific and cognitive potential of teaching university students inverse and incorrect problems using computer technologies. Results. Understanding the scientific and cognitive potential of inverse and incorrect problems, their relationship with applied aspects, the ability to use computer technologies in the study of applied problems will allow students, after graduating from an educational institution, to prove themselves as a successful specialist in applied mathematics in general, and in inverse and incorrect problems, in particular. Conclusion. Graduates who have acquired solid knowledge of inverse and incorrect problems, possess modern scientific methods of their research developed by specialists from different countries of the world, understand the scientific and cognitive potential of inverse and incorrect problems, and possess the skills of independent selection of effective information technologies for solving applied mathematical problems will successfully work in research organizations and independently conduct applied research.

Keywords