Algorithms (May 2024)

Gain and Pain in Graph Partitioning: Finding Accurate Communities in Complex Networks

  • Arman Ferdowsi,
  • Maryam Dehghan Chenary

DOI
https://doi.org/10.3390/a17060226
Journal volume & issue
Vol. 17, no. 6
p. 226

Abstract

Read online

This paper presents an approach to community detection in complex networks by simultaneously incorporating a connectivity-based metric and Max-Min Modularity. By leveraging the connectivity-based metric and employing a heuristic algorithm, we develop a novel complementary graph for the Max-Min Modularity that enhances its effectiveness. We formulate community detection as an integer programming problem of an equivalent yet more compact counterpart model of the revised Max-Min Modularity maximization problem. Using a row generation technique alongside the heuristic approach, we then provide a hybrid procedure for near-optimally solving the model and discovering high-quality communities. Through a series of experiments, we demonstrate the success of our algorithm, showcasing its efficiency in detecting communities, particularly in extensive networks.

Keywords