Energies (Apr 2024)

Diminishing Performance of Pt/CNT in Ethanol Oxidation after High-Potential Scanning

  • Fengping Hu,
  • Jinchang Xu,
  • Lin Wei,
  • Zhenyou Wang,
  • Fangming Jiang

DOI
https://doi.org/10.3390/en17092122
Journal volume & issue
Vol. 17, no. 9
p. 2122

Abstract

Read online

Regenerative fuel cells and the phenomenon of cell reversal (CR) necessitate creating robust catalyst layers for consistent performance in fuel cells. This research used in situ Raman spectroscopy to observe molecular alterations on carbon nanotube-supported platinum catalysts (Pt/CNT) during ethanol oxidation. Following a CR event simulation, the ethanol oxidation efficiency on Pt/CNT was amplified 2.8 times after high-potential scanning but reverted to its initial efficiency after 100 cycles. The adsorbed *CO2− species on Pt/CNT was pivotal for initiating ethanol oxidation, with the rate assessed through Raman analysis. In addition to water electrolysis, the carbon substrate was degraded. This study sheds light on the mechanisms behind catalyst degradation, steering the creation of more advanced catalysts.

Keywords