Advanced Electromagnetics (Feb 2014)

Proposal of C-core Type Transverse Flux Motor for Ship Propulsion – Increasing Torque Density by Dense Stator Configuration –

  • Y. Yamamoto,
  • T. Koseki,
  • Y. Aoyama

DOI
https://doi.org/10.7716/aem.v2i3.198
Journal volume & issue
Vol. 2, no. 3

Abstract

Read online

Electric ship propulsion system has been drawing attention as a solution for savings in energy and maintenance costs. The system is mainly composed of motor, converter and gearbox and required for high torque at low speed. In this situation, transverse flux motors (TFMs) have been proposed to fulfill the low-speed high-torque characteristic due to suitable for short pole pitch and large number of poles to increase torque output. In this trend, we have proposed C-core type motors taking advantage of TFMs’ structure. In this manuscript, a simple design method based on the magnetic-circuit theory and simple modeling of the motor is proposed to search a design parameter for maximizing torque as a pre-process of numerical study. The method takes into consideration the effects of magnetic leakage flux, magnetic saturation and pole-core combination in accordance with the systematic theory. The simple modeling is conducted based on a dense armature structure in previous axial flux motors (AFMs) applied to the new motor design. The validity of the method is verified by 3-D finite element analysis (FEA) and relative error is at most 20%. The minimalist design is shown to be advantageous for effective use in 3-D FEA. As a detailed design by the FEA, high torque density and low cogging to output ratio can be achieved simultaneously in the proposed machine.

Keywords