Physics (Jul 2021)

Scintillation in Low-Temperature Particle Detectors

  • Denys Poda

DOI
https://doi.org/10.3390/physics3030032
Journal volume & issue
Vol. 3, no. 3
pp. 473 – 535

Abstract

Read online

Inorganic crystal scintillators play a crucial role in particle detection for various applications in fundamental physics and applied science. The use of such materials as scintillating bolometers, which operate at temperatures as low as 10 mK and detect both heat (phonon) and scintillation signals, significantly extends detectors performance compared to the conventional scintillation counters. In particular, such low-temperature devices offer a high energy resolution in a wide energy interval thanks to a phonon signal detection, while a simultaneous registration of scintillation emitted provides an efficient particle identification tool. This feature is of great importance for a background identification and rejection. Combined with a large variety of elements of interest, which can be embedded in crystal scintillators, scintillating bolometers represent powerful particle detectors for rare-event searches (e.g., rare alpha and beta decays, double-beta decay, dark matter particles, neutrino detection). Here, we review the features and results of low-temperature scintillation detection achieved over a 30-year history of developments of scintillating bolometers and their use in rare-event search experiments.

Keywords