Scientific Reports (Nov 2017)

Conformal transistor arrays based on solution-processed organic crystals

  • Xiaoli Zhao,
  • Bing Zhang,
  • Qingxin Tang,
  • Xueyan Ding,
  • Shuya Wang,
  • Yuying Zhou,
  • Yanhong Tong,
  • Yichun Liu

DOI
https://doi.org/10.1038/s41598-017-15518-y
Journal volume & issue
Vol. 7, no. 1
pp. 1 – 9

Abstract

Read online

Abstract Conformal transistor array based on solution-processed organic crystals, which can provide sensory and scanning features for monitoring, biofeedback, and tracking of physiological function, presents one of the most promising technologies for future large-scale low-cost wearable and implantable electronics. However, it is still a huge challenge for the integration of solution-processed organic crystals into conformal FETs owing to a generally existing swelling phenomenon of the elastic materials and the lack of the corresponding device fabrication technology. Here, we present a promising route to fabricate a conformal field-effect transistor (FET) array based on solution-processed TIPS-pentacene single-crystal micro/nanowire array. By simply drop-casting the organic solution on an anti-solvent photolithography-compatible electrode with bottom-contact coplanar configuration, the transistor array can be formed and can conform onto uneven objects. Excellent electrical properties with device yield as high as 100%, field-effect mobility up to 0.79 cm2V−1s−1, low threshold voltage, and good device uniformity are demonstrated. The results open up the capability of solution-processed organic crystals for conformal electronics, suggesting their substantial promise for next-generation wearable and implantable electronics.