Molecular Brain (Sep 2021)

GDF11 expressed in the adult brain negatively regulates hippocampal neurogenesis

  • Brittany A. Mayweather,
  • Sean M. Buchanan,
  • Lee L. Rubin

DOI
https://doi.org/10.1186/s13041-021-00845-z
Journal volume & issue
Vol. 14, no. 1
pp. 1 – 13

Abstract

Read online

Abstract Growth differentiation factor 11 (GDF11) is a transforming factor-β superfamily member that functions as a negative regulator of neurogenesis during embryonic development. However, when recombinant GDF11 (rGDF11) is administered systemically in aged mice, it promotes neurogenesis, the opposite of its role during development. The goal of the present study was to reconcile this apparent discrepancy by performing the first detailed investigation into the expression of endogenous GDF11 in the adult brain and its effects on neurogenesis. Using quantitative histological analysis, we observed that Gdf11 is most highly expressed in adult neurogenic niches and non-neurogenic regions within the hippocampus, choroid plexus, thalamus, habenula, and cerebellum. To investigate the role of endogenous GDF11 during adult hippocampal neurogenesis, we generated a tamoxifen inducible mouse that allowed us to reduce GDF11 levels. Depletion of Gdf11 during adulthood increased proliferation of neural progenitors and decreased the number of newborn neurons in the hippocampus, suggesting that endogenous GDF11 remains a negative regulator of hippocampal neurogenesis in adult mice. These findings further support the idea that circulating systemic GDF11 and endogenously expressed GDF11 in the adult brain have different target cells or mechanisms of action. Our data describe a role for GDF11-dependent signaling in adult neurogenesis that has implications for how GDF11 may be used to treat CNS disease.

Keywords