Minerals (Nov 2023)

Petrology and Geochemistry of Mesoarchean Sukinda Ultramafics, Southern Singhbhum Odisha Craton, India: Implications for Mantle Resources and the Geodynamic Setting

  • Debajyoti Nayak,
  • Pranab Das,
  • Sagar Misra

DOI
https://doi.org/10.3390/min13111440
Journal volume & issue
Vol. 13, no. 11
p. 1440

Abstract

Read online

The Sukinda ultramafic complex in India comprises precisely two areas: Kaliapani (KLPN) and Katpal (KTPL). These areas consist of a sequence of lithotypes, including orthopyroxenite, dunite, serpentinite, and chromitite, displaying a rhythmic layering of rocks. These rocks exhibit a cumulate texture and stand out due to their elevated Mg# (78.43–93.20), Cr (905.40–58,799 ppm), Ni (193.81–2790 ppm), Al2O3/TiO2 (27.01–74.06), and Zr/Hf (39.81–55.24) ratios, while possessing lower TiO2 contents (0.01–0.12 wt%). These ultramafics, characterized by low Ti/V (0.83–19.23) and Ti/Sc (7.14–83.72) ratios, negative anomalies of Zr, Hf, Nb, and Ti in a primitive mantle-normalized spider diagram, indicate that the ultramafics originate from a depleted mantle source. Furthermore, the presence of enriched LREE compared to HREE, a negative Eu anomaly, and enrichment of Th, U, and negative Nb anomalies suggest a subduction setting. The whole-rock geochemical data reveal high levels of MgO, Cr, and Ni, as well as low TiO2 and CaO/Al2O3 ratios and high Al2O3/TiO2 ratios. Moreover, the mineral chemistry data of the ultramafic rocks show high-Mg olivine (Fo 90.9−94.1) in dunite, high-Mg orthopyroxene (En 90.4–90.7) in orthopyroxenite, and high Cr# (0.68–0.82) and low Mg# (0.40–0.54) in chromite, alongside significant Al2O3 (9.93–12.86 wt%) and TiO2 (0.20–0.44 wt%) contents in the melt. Such geochemical characteristics strongly suggest that the Sukinda ultramafic originates from the fractional crystallization of a boninitic parental magma, which is derived from the second-stage melting in a depleted metasomatized mantle source within a supra-subduction zone tectonic setting.

Keywords