Bioengineering (Sep 2023)

A Rapid-Patterning 3D Vessel-on-Chip for Imaging and Quantitatively Analyzing Cell–Cell Junction Phenotypes

  • Li Yan,
  • Cole W. Dwiggins,
  • Udit Gupta,
  • Kimberly M. Stroka

DOI
https://doi.org/10.3390/bioengineering10091080
Journal volume & issue
Vol. 10, no. 9
p. 1080

Abstract

Read online

The blood-brain barrier (BBB) is a dynamic interface that regulates the molecular exchanges between the brain and peripheral blood. The permeability of the BBB is primarily regulated by the junction proteins on the brain endothelial cells. In vitro BBB models have shown great potential for the investigation of the mechanisms of physiological function, pathologies, and drug delivery in the brain. However, few studies have demonstrated the ability to monitor and evaluate the barrier integrity by quantitatively analyzing the junction presentation in 3D microvessels. This study aimed to fabricate a simple vessel-on-chip, which allows for a rigorous quantitative investigation of junction presentation in 3D microvessels. To this end, we developed a rapid protocol that creates 3D microvessels with polydimethylsiloxane and microneedles. We established a simple vessel-on-chip model lined with human iPSC-derived brain microvascular endothelial-like cells (iBMEC-like cells). The 3D image of the vessel structure can then be “unwrapped” and converted to 2D images for quantitative analysis of cell–cell junction phenotypes. Our findings revealed that 3D cylindrical structures altered the phenotype of tight junction proteins, along with the morphology of cells. Additionally, the cell–cell junction integrity in our 3D models was disrupted by the tumor necrosis factor α. This work presents a “quick and easy” 3D vessel-on-chip model and analysis pipeline, together allowing for the capability of screening and evaluating the cell–cell junction integrity of endothelial cells under various microenvironment conditions and treatments.

Keywords