Materiales de Construccion (Sep 2020)

Thermal properties of cement mortar with different mix proportions

  • P. Shafigh,
  • I. Asadi,
  • A. R. Akhiani,
  • N. B. Mahyuddin,
  • M. Hashemi

DOI
https://doi.org/10.3989/mc.2020.09219
Journal volume & issue
Vol. 70, no. 339
pp. e224 – e224

Abstract

Read online

The energy required for the heating and cooling of buildings is strongly dependant on the thermal properties of the construction material. Cement mortar is a common construction material that is widely used in buildings. The main aim of this study is to assess the thermal properties of cement mortar in terms of its ther­mal conductivity, heat capacity and thermal diffusivity in a wide range of grades (cement: sand ratio between 1:2 and 1:8). As there is insufficient information to predict the thermal conductivity and diffusivity of a cement mortar from its physical and mechanical properties, the relationships between thermal conductivity and diffu­sivity and density, compressive strength, water absorption and porosity are also discussed. Our results indicate that, for a cement mortar with a 28-day compressive strength in the range of 6–60 MPa, thermal conductivity, specific heat and thermal diffusivity are in the range of 1.5–2.7 W/(m.K), 0.87–1.04 kJ/kg.K and 0.89–1.26 (x10-6 m2/s), respectively. The scanning electron microscope (SEM) images showed that pore size varied from 18 μm to 946 μm for samples with different cement-to-sand ratios. The porosity of cement mortar has a signifi­cant effect on its thermal and physical properties. For this reason, thermal conductivity and thermal diffusivity was greater in cement mortar samples with a higher density and compressive strength.

Keywords