Therapeutic Advances in Respiratory Disease (Jul 2023)

Linkage of NAMPT promoter variants to eNAMPT secretion, plasma eNAMPT levels, and ARDS severity

  • Heather Lynn,
  • Xiaoguang Sun,
  • Nancy G. Casanova,
  • Christian Bime,
  • Vivian Reyes Hernon,
  • Clayton Lanham,
  • Radu C. Oita,
  • Nikolas Ramos,
  • Belinda Sun,
  • Dawn K. Coletta,
  • Sara M. Camp,
  • Jason H. Karnes,
  • Nathan A. Ellis,
  • Joe G.N. Garcia

DOI
https://doi.org/10.1177/17534666231181262
Journal volume & issue
Vol. 17

Abstract

Read online

Background and objectives: eNAMPT (extracellular nicotinamide phosphoribosyltransferase), a novel DAMP and TLR4 ligand, is a druggable ARDS therapeutic target with NAMPT promoter SNPs associated with ARDS severity. This study assesses the previously unknown influence of NAMPT promoter SNPs on NAMPT transcription, eNAMPT secretion, and ARDS severity. Methods and design: Human lung endothelial cells (ECs) transfected with NAMPT promoter luciferase reporters harboring SNPs G-1535A, A-1001 C, and C-948A, were exposed to LPS or LPS/18% cyclic stretch (CS) and NAMPT promoter activity, NAMPT protein expression, and secretion assessed. NAMPT genotypes and eNAMPT plasma measurements (Days 0/7) were assessed in two ARDS cohorts (DISCOVERY n = 428; ALVEOLI n = 103). Results: Comparisons of minor allelic frequency (MAF) in both ARDS cohorts with the 1000 Human Genome Project revealed the G-1535A and C-948A SNPs to be significantly associated with ARDS in Blacks compared with controls and trended toward significance in non-Hispanic Whites. LPS-challenged and LPS/18% CS–challenged EC harboring the -1535G wild-type allele exhibited significantly increased NAMPT promoter activity (compared with -1535A) with the -1535G/-948A diplotype exhibiting significantly increased NAMPT promoter activity, NAMPT protein expression, and eNAMPT secretion compared with the -1535A/-948 C diplotype. Highly significant increases in Day 0 eNAMPT plasma values were observed in both DISCOVERY and ALVEOLI ARDS cohorts (compared with healthy controls). Among subjects surviving to Day 7, Day 7 eNAMPT values were significantly increased in Day 28 non-survivors versus survivors. The protective -1535A SNP allele drove -1535A/-1001A and -1535A/-948 C diplotypes that confer significantly reduced ARDS risk (compared with -1535G, -1535G/-1001 C, -1535G/-948A), particularly in Black ARDS subjects. NAMPT SNP comparisons within the two ARDS cohorts did not identify significant association with either APACHE III scores or plasma eNAMPT levels. Conclusion: NAMPT SNPs influence promoter activity, eNAMPT protein expression/secretion, plasma eNAMPT levels, and ARDS severity. NAMPT genotypes are a potential tool for stratification in eNAMPT-focused ARDS clinical trials.