Molecular Cancer (Feb 2022)

Methyltransferase like 7B is a potential therapeutic target for reversing EGFR-TKIs resistance in lung adenocarcinoma

  • Huibin Song,
  • Dongcheng Liu,
  • Lingwei Wang,
  • Kaisheng Liu,
  • Chen Chen,
  • Le Wang,
  • Yi Ren,
  • Bing Ju,
  • Fuhua Zhong,
  • Xingyu Jiang,
  • Guangsuo Wang,
  • Zhe-Sheng Chen,
  • Chang Zou

DOI
https://doi.org/10.1186/s12943-022-01519-7
Journal volume & issue
Vol. 21, no. 1
pp. 1 – 20

Abstract

Read online

Abstract Background Identification of potential novel targets for reversing resistance to Epidermal Growth Factor Receptor (EGFR)-tyrosine kinase inhibitors (EGFR-TKIs) holds great promise for the treatment of relapsed lung adenocarcinoma (LUAD). In the present study, we aim to investigate the role of methyltransferase-like 7B (METTL7B) in inducing EGFR-TKIs resistance in LUAD and whether it could be a therapeutic target for reversing the resistance. Methods METTL7B-overexpressed LUAD cell lines, gefitinib and osimertinib-resistant Cell-Derived tumor Xenograft (CDX) and Patient-Derived tumor Xenograft (PDX) mouse models were employed to evaluate the role of METTL7B in TKIs resistance. Ultraperformance liquid chromatography-tandem mass spectrometer (UPLC-MS/MS) was used to identify the metabolites regulated by METTL7B. Methylated RNA immunoprecipitation (MeRIP)-qPCR analysis was performed to measure the N6-methyladenosine (m6A) status of mRNA of METTL7B targeted genes. Gold nanocluster-assisted delivery of siRNA targeting METTL7B (GNC-siMETTL7B) was applied to evaluate the effect of METTL7B in TKIs resistance. Results Increased expression of METTL7B was found in TKIs-resistant LUAD cells and overexpression of METTL7B in LUAD cells induced TKIs resistance both in vitro and in vivo. Activated ROS-metabolism was identified in METTL7B-overexpressed LUAD cells, accompanied with upregulated protein level of GPX4, HMOX1 and SOD1 and their enzymatic activities. Globally elevated m6A levels were found in METTL7B-overexpressed LUAD cells, which was reduced by knock-down of METTL7B. METTL7B induced m6A modification of GPX4, HMOX1 and SOD1 mRNA. Knock-down of METTL7B by siRNA re-sensitized LUAD cells to gefitinib and osimertinib both in vitro and in vivo. Conclusions This study uncovered a new critical link in METTL7B, glutathione metabolism and drug resistance. Our findings demonstrated that METTL7B inhibitors could be used for reversing TKIs resistance in LUAD patients.

Keywords