Journal of Inequalities and Applications (Jan 1999)
An integral operator inequality with applications
Abstract
Linear integral operators are defined acting in the Lebesgue integration spaces on intervals of the real line. A necessary and sufficient condition is given for these operators to be bounded, and a characterisation is given for the operator bounds. There are applications of the results to integral inequalities; also to properties of the domains of self-adjoint unbounded operators, in Hilbert function spaces, associated with the classical orthogonal polynomials and their generalisations.