JHEP Reports (Jul 2023)
Immuno-genomic-radiomics to predict response of biliary tract cancer to camrelizumab plus GEMOX in a single-arm phase II trial
Abstract
Background & Aims: Immunotherapy is an option for the treatment of advanced biliary tract cancer (BTC), although it has a low response rate. In this post hoc analysis, we investigated the predictive value of an immuno-genomic-radiomics (IGR) analysis for patients with BTC treated with camrelizumab plus gemcitabine and oxaliplatin (GEMOX) therapy. Methods: Thirty-two patients with BTC treated with camrelizumab plus GEMOX were prospectively enrolled. The relationship between high-throughput computed tomography (CT) radiomics features with immuno-genomic expression was tested and scaled with a full correlation matrix analysis. Odds ratio (OR) of IGR expression for objective response to camrelizumab plus GEMOX was tested with logistic regression analysis. Association of IGR expression with progression-free survival (PFS) and overall survival (OS) was analysed with a Cox proportional hazard regression. Results: CT radiomics correlated with CD8+ T cells (r = –0.72–0.71, p = 0.004–0.047), tumour mutation burden (TMB) (r = 0.59, p = 0.039), and ARID1A mutation (r = –0.58–0.57, p = 0.020–0.034). There was no significant correlation between radiomics and programmed cell death protein ligand 1 expression (p >0.96). Among all IGR biomarkers, only four radiomics features were independent predictors of objective response (OR = 0.09–3.81; p = 0.011–0.044). Combining independent radiomics features into an objective response prediction model achieved an area under the curve of 0.869. In a Cox analysis, radiomics signature [hazard ratio (HR) = 6.90, p <0.001], ARID1A (HR = 3.31, p = 0.013), and blood TMB (HR = 1.13, p = 0.023) were independent predictors of PFS. Radiomics signature (HR = 6.58, p <0.001) and CD8+ T cells (HR = 0.22, p = 0.004) were independent predictors of OS. Prognostic models integrating these features achieved concordance indexes of 0.677 and 0.681 for PFS and OS, respectively. Conclusions: Radiomics could act as a non-invasive immuno-genomic surrogate of BTC, which could further aid in response prediction for patients with BTC treated with immunotherapy. However, multicenter and larger sample studies are required to validate these results. Impact and implications: Immunotherapy is an alternative for the treatment of advanced BTC, whereas tumour response is heterogeneous. In a post hoc analysis of the single-arm phase II clinical trial (NCT03486678), we found that CT radiomics features were associated with the tumour microenvironment and that IGR expression was a promising marker for tumour response and long-term survival. Clinical trial number: Post hoc analysis of NCT03486678.