Applied Sciences (Aug 2020)

Synthesis and Properties of Novel Calcia-Stabilized Zirconia (Ca-SZ) with Nano Calcium Oxide Derived from Cockle Shells and Commercial Source for Dental Application

  • Abbas Ibrahim Hussein,
  • Ahmad Nazeer Che Mat,
  • Nur Ain Adila Abd Wahab,
  • Ismail Ab. Rahman,
  • Adam Husein,
  • Zuryati Ab-Ghani

DOI
https://doi.org/10.3390/app10175751
Journal volume & issue
Vol. 10, no. 17
p. 5751

Abstract

Read online

Various oxides are used to stabilize zirconium oxide (ZrO2), but their superior hardness causes wear of the machining tool. Calcia-doped zirconia has been studied but reports on properties suitable for dental application are lacking. Therefore, this study aimed to fabricate and characterize zirconia stabilized by calcium oxide (CaO) derived from cockle shells and compare it with zirconia stabilized by commercial CaO, sintered at different temperatures. In this study, 176 pressed pellets of zirconia mixed with CaO either derived from cockle shells or commercial CaO were sintered between 1200 and 1500 °C to produce calcia-doped zirconia. Characterizations were made with SEM and XRD. Specimens were subjected to density, compressive and flexural strength, and Vickers hardness testing. Data were analyzed using the independent t-test and one-way ANOVA. XRD revealed the zirconia was stabilized into tetragonal and cubic phases (Ca-SZ). Ca-SZ cockle shells (CS) and Ca-SZ commercial (CC) have average particle sizes of 267 nm and 272 nm, respectively, with similar surface roughness. At 1400 °C sintering temperature, flexural strengths were 1165 and 1152 MPa, compressive strengths were 4914 and 4913 MPa, and Vickers hardness were 977 and 960 MPa for Ca-SZ(CS) and Ca-SZ(CC), respectively. Both Ca-SZ materials showed no significant difference in most properties (p < 0.05) when sintered at different temperatures. The fully sintered Ca-SZ is less hard compared to the ceria-stabilized tetragonal zirconia polycrystal (Ce-TZP) available on the market. Thus, Ca-SZ may be used as an alternative to the current zirconia available on the market for dental application.

Keywords