BMC Genomics (Jun 2018)

Liver transcriptome analysis reveals extensive transcriptional plasticity during acclimation to low salinity in Cynoglossus semilaevis

  • Yufeng Si,
  • Haishen Wen,
  • Yun Li,
  • Feng He,
  • Jifang Li,
  • Siping Li,
  • Huiwen He

DOI
https://doi.org/10.1186/s12864-018-4825-4
Journal volume & issue
Vol. 19, no. 1
pp. 1 – 14

Abstract

Read online

Abstract Background Salinity is an important abiotic stress that influences the physiological and metabolic activity, reproduction, growth and development of marine fish. It has been suggested that half-smooth tongue sole (Cynoglossus semilaevis), a euryhaline fish species, uses a large amount of energy to maintain osmotic pressure balance when exposed to fluctuations in salinity. To delineate the molecular response of C. semilaevis to different levels of salinity, we performed RNA-seq analysis of the liver to identify the genes and molecular and biological processes involved in responding to salinity changes. Results The present study yielded 330.4 million clean reads, of which 83.9% were successfully mapped to the reference genome of C. semilaevis. One hundred twenty-eight differentially expressed genes (DEGs), including 43 up-regulated genes and 85 down-regulated genes, were identified. These DEGs were highly represented in metabolic pathways, steroid biosynthesis, terpenoid backbone biosynthesis, butanoate metabolism, glycerolipid metabolism and the 2-oxocarboxylic acid metabolism pathway. In addition, genes involved in metabolism, osmoregulation and ion transport, signal transduction, immune response and stress response, and cytoskeleton remodeling were affected during acclimation to low salinity. Genes acat2, fdps, hmgcr, hmgcs1, mvk, pmvk, ebp, lss, dhcr7, and dhcr24 were up-regulated and abat, ddc, acy1 were down-regulated in metabolic pathways. Genes aqp10 and slc6a6 were down-regulated in osmoregulation and ion transport. Genes abat, fdps, hmgcs1, mvk, pmvk and dhcr7 were first reported to be associated with salinity adaptation in teleosts. Conclusions Our results revealed that metabolic pathways, especially lipid metabolism were important for salinity adaptation. The candidate genes identified from this study provide a basis for further studies to investigate the molecular mechanism of salinity adaptation and transcriptional plasticity in marine fish.

Keywords