Nature Communications (Nov 2024)

A self-reactivated PdCu catalyst for aldehyde electro-oxidation with anodic hydrogen production

  • Ming Yang,
  • Yimin Jiang,
  • Chung-Li Dong,
  • Leitao Xu,
  • Yutong Huang,
  • Shifan Leng,
  • Yandong Wu,
  • Yongxiang Luo,
  • Wei Chen,
  • Ta Thi Thuy Nga,
  • Shuangyin Wang,
  • Yuqin Zou

DOI
https://doi.org/10.1038/s41467-024-54286-y
Journal volume & issue
Vol. 15, no. 1
pp. 1 – 11

Abstract

Read online

Abstract The low-potential aldehyde oxidation reaction can occur at low potential (~0 VRHE) and release H2 at the anode, enabling hydrogen production with less than one-tenth of the energy consumption required for water splitting. Nevertheless, the activity and stability of Cu catalysts remain inadequate due to the oxidative deactivation of Cu-based materials. Herein, we elucidate the deactivation and reactivation cycle of Cu electrocatalyst and develop a self-reactivating PdCu catalyst that exhibits significantly enhanced stability. Initially, in-situ Raman spectroscopy confirm the cycle involved in electrochemical oxidation and non-electrochemical reduction. Subsequently, in-situ Raman spectroscopy and X-ray absorption fine structure reveal that the Pd component accelerates the rate of the non-electrochemical reduction, thereby enhancing the stability of the Cu-based electrocatalyst. Finally, a bipolar hydrogen production device is assembled utilizing the PdCu electrocatalyst, which can deliver a current of 400 mA cm−2 at 0.42 V and operate continuously for 120 h. This work offers guidance to enhance the stability of the Cu-based electrocatalyst in a bipolar hydrogen production system.