Cell Reports (Jul 2023)

METTL3-mediated m6A methylation orchestrates mRNA stability and dsRNA contents to equilibrate γδ T1 and γδ T17 cells

  • Zhiqiang Xiao,
  • Shanshan Wang,
  • Yixia Tian,
  • Wenkai Lv,
  • Hao Sheng,
  • Mingjie Zhan,
  • Qiongxiao Huang,
  • Zhanpeng Zhang,
  • Leqing Zhu,
  • Chuyun Zhu,
  • Hui Zhong,
  • Qiong Wen,
  • Zonghua Liu,
  • Jingyi Tan,
  • Yan Xu,
  • Meixiang Yang,
  • Yumei Liu,
  • Richard A. Flavell,
  • Quanli Yang,
  • Guangchao Cao,
  • Zhinan Yin

Journal volume & issue
Vol. 42, no. 7
p. 112684

Abstract

Read online

Summary: γδ T cells make key contributions to tissue physiology and immunosurveillance through two main functionally distinct subsets, γδ T1 and γδ T17. m6A methylation plays critical roles in controlling numerous aspects of mRNA metabolism that govern mRNA turnover, gene expression, and cellular functional specialization; however, its role in γδ T cells remains less well understood. Here, we find that m6A methylation controls the functional specification of γδ T17 vs. γδ T1 cells. Mechanistically, m6A methylation prevents the formation of endogenous double-stranded RNAs and promotes the degradation of Stat1 transcripts, which converge to prevent over-activation of STAT1 signaling and ensuing inhibition of γδ T17. Deleting Mettl3, the key enzyme in the m6A methyltransferases complex, in γδ T cells reduces interleukin-17 (IL-17) production and ameliorates γδ T17-mediated psoriasis. In summary, our work shows that METTL3-mediated m6A methylation orchestrates mRNA stability and double-stranded RNA (dsRNA) contents to equilibrate γδ T1 and γδ T17 cells.

Keywords