IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing (Jan 2021)

Combining 3D Radiative Transfer Model and Convolutional Neural Network to Accurately Estimate Forest Canopy Cover From Very High-Resolution Satellite Images

  • Decai Jin,
  • Jianbo Qi,
  • Huaguo Huang,
  • Linyuan Li

DOI
https://doi.org/10.1109/JSTARS.2021.3122509
Journal volume & issue
Vol. 14
pp. 10953 – 10963

Abstract

Read online

Forest canopy cover (FCC) plays an important role in many ecological, hydrological and forestry applications. For large-scale applications, FCC is usually estimated from remotely sensed data by inverting radiative transfer models (RTMs) or using data-driven regressions. In this article, we proposed a hybrid model, which combines a 3-D RTM and transfer learning-based convolutional neural network (T-CNN), to estimate FCC from very high-resolution satellite images (e.g., Chinese GaoFen-2, 1 m resolution with 4 bands). Unlike common hybrid models that are purely trained with simulation data, T-CNN combines simulation data-based pre-training and actual data-based transfer learning, which is a widely used technique in artificial intelligence for fine-tuning models. The performance of T-CNN was compared with a random forest (RF) model and two general CNN models, including CNN trained with actual dataset only (data-CNN) and CNN trained with RTM simulation data only (RTM-CNN). Results on the independent validation dataset (not used in training stage) showed that T-CNN had higher accuracy (RMSE = 0.121, R2 = 0.83), compared with RF (RMSE = 0.26, R2 = 0.61), Data-CNN (RMSE = 0.142, R2 = 0.81), and RTM-CNN (RMSE = 0.144, R2 = 0.73), which indicates that T-CNN has a strong transferability. Tests on different training sizes showed that T-CNN (0.084 < RMSE < 0.108) provided constantly better performances than RF (0.116 < RMSE < 0.122) and data-CNN (0.103 < RMSE < 0.128), which demonstrates the potential of T-CNN as an alternative to RTM-based inversion and data-driven regressions to estimate FCC, especially when training data is imbalanced and inadequate.

Keywords