Diabetology & Metabolic Syndrome (Jul 2017)

Changes of myocardial lipidomics profiling in a rat model of diabetic cardiomyopathy using UPLC/Q-TOF/MS analysis

  • Shifen Dong,
  • Rong Zhang,
  • Yaoyue Liang,
  • Jiachen Shi,
  • Jiajia Li,
  • Fei Shang,
  • Xuezhou Mao,
  • Jianning Sun

DOI
https://doi.org/10.1186/s13098-017-0249-6
Journal volume & issue
Vol. 9, no. 1
pp. 1 – 9

Abstract

Read online

Abstract Background Diabetic cardiomyopathy (DCM) is a serious cardiac dysfunction induced by changes in the structure and contractility of the myocardium that are initiated in part by alterations in energy substrates. The underlying mechanisms of DCM are still under controversial. The observation of lipids, especially lipidomics profiling, can provide an insight into the know the biomarkers of DCM. The aim of our research was to detect changes of myocardial lipidomics profiling in a rat model of diabetic cardiomyopathy. Methods Diabetic cardiomyopathy was induced by feeding a high-sucrose/fat diet (HSFD) for 28 weeks and streptozotocin (30 mg/kg, intraperitoneally). The ultra-high-performance liquid chromatography (UPLC) coupled to quadruple time-of flight (QTOF) mass spectrometer was used to acquire and analyze the lipidomics profiling of myocardial tissue. Meanwhile, parameters of cardiac function were collected using cardiac catheterization, and the cardiac index was calculated, and fasting blood glucose and lipid levels were measured by an ultraviolet spectrophotometric method. Results We detected 3023 positive ion peaks and 300 negative ion peaks. Levels of phosphatidylcholine (PC) (22:6/18:2), PC (22:6/18:1), PC (20:4/16:1), PC (16:1/18:3), phosphatidylethanolamine (PE) (20:4/18:2), and PE (20:4/16:0) were down-regulated, and PC (20:2/18:2), PC (18:0/16:0), and PC (20:4/18:0) were up-regulated in DCM model rats, when compared with control rats. Cardiac functions signed as values of left ventricular systolic pressure, maximal uprising velocity of left ventricular pressure and maximal decreasing velocity of left ventricular pressure were injured by 21–44%, and the cardiac index was increased by 25%, and fasting blood glucose and lipids were increased by 34–368%. Meanwhile, the cardiac lipid-related biomarkers have significant correlation with changes of cardiac function and cardiac index. Conclusions UPLC/Q-TOF/MS analysis data suggested changes of some potential lipid biomarkers in the development of cardiac dysfunction and hypertrophy of diabetic cardiomyopathy, which may serve as potential important targets for clinical diagnosis and therapeutic intervention of DCM in the future.

Keywords