Micromachines (May 2022)
Analysis of Tool Wear and Roughness of Graphite Surfaces Machined Using MCD and NCD-Coated Ball Endmills
Abstract
The high-purity G5 graphite material is widely used for glass moulding and provides high hardness and brittleness because it is sintered to fine particles unlike other graphite materials. Hence, tool cutting of a G5 workpiece is performed by local fracture instead of plastic deformation of the machined surface. Although a diamond-coated tool with outstanding hardness is used to machine very hard graphite, the tool shows variability regarding the service life and machining performance depending on the grain size, even in the same machining environment. We investigated the wear and change trend of machined surface roughness considering microcrystalline diamond (MCD) and nanocrystalline diamond (NCD)-coated tools, which are generally used to machine graphite materials, and analysed their relation with coating. For rough machining, the MCD-coated tool, for which the delamination of coating occurred later, showed less wear and improved machined surface roughness. For precision machining, the NCD tool showed less tool wear rate relative to the cutting length, leading to a small difference in the machined surface roughness between the two tools. We conclude that if rough and precision machining processes are performed using the same cutting tool, the MCD-coated tool is advantageous in terms of service life, while the difference in roughness of the final machined surface between the tools is negligible.
Keywords