BMC Veterinary Research (Feb 2018)

Potential role of orexin A binding the receptor 1 for orexins in normal and cryptorchid dogs

  • Giovanna Liguori,
  • Caterina Squillacioti,
  • Loredana Assisi,
  • Alessandra Pelagalli,
  • Alfredo Vittoria,
  • Anna Costagliola,
  • Nicola Mirabella

DOI
https://doi.org/10.1186/s12917-018-1375-6
Journal volume & issue
Vol. 14, no. 1
pp. 1 – 11

Abstract

Read online

Abstract Background Cryptorchidism is one of the most common birth disorders of the male reproductive system identified in dogs and other mammals. This condition is characterised by the absence of one (unilateral) or both (bilateral) gonads from the scrotum. The peptides orexin A (OxA) and B (OxB) were obtained by post-transcriptional proteolytic cleavage of a precursor molecule, called prepro-orexin. These substances bind two types of G-coupled receptors called receptor 1 (OX1R) and 2 (OX2R) for orexins. OX1R is specific to OxA while OX2R binds the two peptides with equal affinity. Orexins modulate a great variety of body functions, such as the reproductive mechanism. The purpose of the present research was to study the presence of OxA and its receptor 1 and their possible involvement in the canine testis under healthy and pathological conditions. Methods This study was performed using adult male normal dogs and male dogs affected by unilateral cryptorchidism. Tissue samples were collected from testes and were divided into three groups: normal, contralateral and cryptic. The samples were used for immunohistochemistry, Western blot and in vitro tests for testosterone evaluation in normal and pathological conditions. Results OxA-immunoreactivity (IR) was described in interstitial Leydig cells of the normal gonad, and Leydig, Sertoli cells and gonocytes in the cryptic gonad. In the normal testis, OX1R-IR was described in Leydig cells, in pachytene and second spermatocytes and in immature and mature spermatids throughout the stages of the germ developing cycle of the male gonad. In the cryptic testis OX1R-IR was distributed in Leydig and Sertoli cells. The presence of prepro-orexin and OX1R was demonstrated by Western blot analysis. The incubation of fresh testis slices with OxA caused the stimulation of testosterone synthesis in the normal and cryptic gonad while the steroidogenic OxA-induced effect was cancelled by adding the selective OX1R antagonist SB-408124. Conclusions These results led us to hypothesise that OxA binding OX1R might be involved in the modulation of spermatogenesis and steroidogenesis in canine testis in healthy and pathological conditions.

Keywords