MATEC Web of Conferences (Jun 2014)
Fatigue behaviour FEM modeling of deep groove ball bearing mounted in automotive alternator submitted to variable loading
Abstract
Ball bearings subsurface materials are subjected to rolling contact fatigue with multiaxial stress state during loading cycle. The complex operating conditions of automotive bearings are different from classic operating conditions their fatigue crack initiation predicted by standards can be seen underestimated. This work presents a numerical approach of ball bearings to evaluate its fatigue behaviour in order to predict the life. A preliminary study has been done to evaluate the load distribution in the bearings. The results are integrated in a numerical dynamic model to study the bearing material rolling fatigue behaviour in constant and variable loading cases. By using fatigue criteria and damage laws, the analysis of stress state in bearing material leads to life prediction or the number of cycles before crack initiations. These results are compared to current standard methods used for ball bearing life prediction.